
Continuous Improvement
Release 1.0.0

Adisakshya Chauhan

Dec 12, 2021

GETTING STARTED

1 About 1

2 Community Guide 3
2.1 How can I contribute? . 3
2.2 Contributor Covenant Code of Conduct . 4

3 Microservices Documentation 7
3.1 Reminder Service . 7
3.2 Event Service . 7
3.3 Notification Service . 7
3.4 Notification Scheduler . 7

4 Changelog 9
4.1 Reminder Service . 9
4.2 Event Service . 9
4.3 Notification Service . 9
4.4 Notification Scheduler . 9

5 CI/CD Pipeline 11

6 Deployment Architecture 13
6.1 Deployment Environments . 13
6.2 Kubernetes Namespaces . 14
6.3 Docker Images . 16
6.4 Configurations and Environment Variables . 17

i

ii

CHAPTER

ONE

ABOUT

Many organizations moved away from their monolithic systems that served them well for many years to microservices
which is the state-of-the-art software development technique that allows a complex application to be built as a suite of
small services, developed around specific areas. Combined, they provide a cohesive set of functionalities and bring
important business benefits.

This project embraces the DevOps method of working with microservices which is highly significant and well needed
for these technologies to work at their best, highlighting key concepts to scale, synchronize and secure microservices
architecture by implementing a notification-delivery system and also considering ways of optimizing the process of
provisioning and managing infrastructure resources, automation servers, on-premise and services deployed in multiple
environments.

1

Continuous Improvement, Release 1.0.0

2 Chapter 1. About

CHAPTER

TWO

COMMUNITY GUIDE

2.1 How can I contribute?

2.1.1 Submit an issue

Submitting an issue, be it a bug report or a feature request or an optimization, is one of the best ways to contribute to
this project. Checking if everything works in your system and if the latest commits work properly for you are both good
ways to find bugs.

Please search existing issues to avoid creating duplicates.

2.1.2 Improve issues

Some issues are created with missing information (needs more info), are not reproducible, or are plain duplicates.
Help us finding reproducible steps and closing duplicates.

2.1.3 Comment on issues

We are always looking for more opinions, leaving a comment in the issue tracker is a good opportunity to influence the
future direction of Notable.

We also consider the number of “:+1:” an issue has when deciding if we are going to work on it in the Next milestone
or not, so be sure to add your “:+1:” to the issues you’re most interested in.

2.1.4 Submit a pull request

All versions of the app are open-source, you can fork the repository and modify it, and submit it as a PR or you might
want to do that to experiment with radical new ideas.

3

https://github.com/adisakshya/playground/commits/master
https://github.com/adisakshya/playground/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22+label%3A%22needs+more+info%22
https://github.com/adisakshya/playground/milestones

Continuous Improvement, Release 1.0.0

2.2 Contributor Covenant Code of Conduct

Please note that this project is released with a Code of Conduct. By participating in this project you agree to abide by
its terms.

2.2.1 Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to make
participation in our project and our community a harassment-free experience for everyone, regardless of age, body size,
disability, ethnicity, sex characteristics, gender identity and expression, level of experience, education, socio-economic
status, nationality, personal appearance, race, religion, or sexual identity and orientation.

2.2.2 Our Standards

Examples of behavior that contributes to creating a positive environment include:

• Using welcoming and inclusive language

• Being respectful of differing viewpoints and experiences

• Gracefully accepting constructive criticism

• Focusing on what is best for the community

• Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

• The use of sexualized language or imagery and unwelcome sexual attention or advances

• Trolling, insulting/derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or electronic address, without explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

2.2.3 Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appro-
priate and fair corrective action in response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits,
issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any
contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.

4 Chapter 2. Community Guide

Continuous Improvement, Release 1.0.0

2.2.4 Scope

This Code of Conduct applies within all project spaces, and it also applies when an individual is representing the project
or its community in public spaces. Examples of representing a project or community include using an official project
e-mail address, posting via an official social media account, or acting as an appointed representative at an online or
offline event. Representation of a project may be further defined and clarified by project maintainers.

2.2.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team
at adisakshya98@gmail.com. All complaints will be reviewed and investigated and will result in a response that is
deemed necessary and appropriate to the circumstances. The project team is obligated to maintain confidentiality with
regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent
repercussions as determined by other members of the project’s leadership.

2.2.6 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at https://www.contributor-
covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see https://www.contributor-covenant.org/faq

2.2. Contributor Covenant Code of Conduct 5

https://www.contributor-covenant.org

Continuous Improvement, Release 1.0.0

6 Chapter 2. Community Guide

CHAPTER

THREE

MICROSERVICES DOCUMENTATION

3.1 Reminder Service

This documentation is imported from official documentation of reminder-service

3.2 Event Service

This documentation is imported from official documentation of event-service

3.3 Notification Service

This documentation is imported from official documentation of notification-service

3.4 Notification Scheduler

This documentation is imported from official documentation of notification-scheduler

7

https://github.com/adisakshya/reminder-service
https://github.com/adisakshya/event-service
https://github.com/adisakshya/notification-service
https://github.com/adisakshya/custom-scheduler

Continuous Improvement, Release 1.0.0

8 Chapter 3. Microservices Documentation

CHAPTER

FOUR

CHANGELOG

4.1 Reminder Service

This changelog is imported from official changelog of reminder-service

4.2 Event Service

This changelog is imported from official changelog of event-service

4.3 Notification Service

This changelog is imported from official changelog of notification-service

4.4 Notification Scheduler

This changelog is imported from official changelog of notification-scheduler

9

https://github.com/adisakshya/reminder-service
https://github.com/adisakshya/event-service
https://github.com/adisakshya/notification-service
https://github.com/adisakshya/custom-scheduler

Continuous Improvement, Release 1.0.0

10 Chapter 4. Changelog

CHAPTER

FIVE

CI/CD PIPELINE

What is CI-CD?

Continuous Integration (CI) and Continuous Deployment/Delivery (CD) is a method to frequently deliver software to
customers by introducing automation into the stages of software development. CI/CD introduces ongoing automation
and continuous monitoring throughout the lifecycle of apps, from integration and testing phases to delivery and de-
ployment. Taken together, these connected practices are often referred to as a “CI/CD pipeline” and are supported by
development and operations teams working together.

The goal of CI is to establish a consistent and automated method to build, package, and test software. CD picks up the
CI artifacts and automate the delivery of application to a selected infrastructure environment.

How CI/CD has been used with microservices?

The Notification Delivery system runs in 2 environments namely - 1. Development (or dev) Environment 2. Production
Environment

At the source code level these environments can be distinguished using Git branches. Every microservice has 3 git
branches namely development, production and master.

For every commit corresponding to a major-minor update, bug-fix, improvements, patches is built, tested and deployed
using a CI/CD pipeline powered by Travis CI.

11

Continuous Improvement, Release 1.0.0

CI/CD stages are different for different branches and environments. Any commit/merge to the development-branch will
build the source code and update the development docker-image on DockerHub, same applies for commits/merges on
production-branch.

Any update in development environment will be reflected only in the development namespace and any update in pro-
duction development environment will be reflected only in the production namespace. Updates may include but not
limited to the following - 1. Scaling number of pods 2. Updating deployment with newer version of docker image 3.
Updaing environment variables and secrets

After the build is complete Ansible updates the Kubernetes deployments by telling it to pull the updated docker-images
for the microservices from DockerHub and create/update various resources as defined in the configuration files.

12 Chapter 5. CI/CD Pipeline

CHAPTER

SIX

DEPLOYMENT ARCHITECTURE

6.1 Deployment Environments

The notification-delivery system is deployed on Kubernetes in multiple environments and maintained on GitHub. The
table below describes a list of possible tiers -

Local - Developer’s desktop/workstation where changes are worked on and tried out. Development (dev) - Develop-
ment servers acting as a sandbox where unit testing may be performed by the developer. The environment may contain
development tools, different or additional versions of libraries and support software, etc., which are not present in
the production environment. Staging - Mirror of production environment. Production - The environment that users
directly interact with.

For this projects the microservices are deployed in 2 environments namely -

1. Development (or dev) Environment

2. Production Environment

13

Continuous Improvement, Release 1.0.0

At the source code level these environments are distinguished using Git branches. The development and production
git branchs of the respective repositories features the source code for the Development Environment and the Production
Environment respectively.

Showing
all branches in the Notification Service git repository

The development branch is created from the master branch. An appropriate branch can be created from the development
branch for any feature updates, patches etc and then it can be merged back to the development branch. Say when a feature
currently in the development branch is complete to be shiped then the development branch can be merged to the master
branch. The master branch reflects the code for the staging envionment through which all kinds of updates have to pass
through. The production branch reflects the deployed code. A newer version of a microservice can be deployed by
merging the master branch into the production branch. If you need to know what code is in production, you can check
out the production branch.

6.2 Kubernetes Namespaces

Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters
are called namespaces and provide logical separation between the teams and their environments.

At the deployment level, i.e., on Kubernetes the deployment environments are distinguished using namespaces. Both
development and production environments have their own namespaces, which logically separates them and allows mod-
ification in one without affecting the other environment. Using namespaces as environments makes it easier to manage
workload for a project from a single Kubernetes cluster and this avoids the pain of maintaining multiple Kubernetes
clusters for multiple environments.

14 Chapter 6. Deployment Architecture

Continuous Improvement, Release 1.0.0

Kubernetes
Dashboard showing production and development namespaces

The production namespace wraps the production workload i.e., the source-code corresponding to the production-
version/branch of each microservice is deployed in this namespace. The development namespace wraps the develop-
ment workload i.e., the source-code corresponding to the development-version/branch of each microservice is deployed
in this namespace.

6.2. Kubernetes Namespaces 15

Continuous Improvement, Release 1.0.0

Each environment has a unique identifier prefix asssigned to it, for production environment it is prod and for de-
velopment environment it is dev. The unique prefix is used while naming the deployments, replica-sets, pods and
services in the environment. For example the Notification Service is named as prod-notification-service and
dev-notification-service when deployed to production environmentand development environment respectively.
These prefix are also used while tagging the docker-images for the microservices to separate production and develop-
ment packages.

Each environment has it own set of configurations, deployments and services running and independently interacting
with various external services like AWS SNS, SQS, RDS, Firebase Cloud Messaging without interferring with the other
environment.

The namespaces are created using the following YAML configuration -

apiVersion: v1
kind: Namespace
metadata:
name: development
labels:
name: development

apiVersion: v1
kind: Namespace
metadata:
name: production
labels:
name: production

6.3 Docker Images

To deploy any application to Kubernetes it is needed to be wraped as a container, this can be done by building docker-
images. Each microservice is packaged as a docker image stored in a image repository provided by Dockerhub.

As each microservice runs in 2 environments namely development and production which are inturn two different
namespaces in the Kubernetes Cluster, at the source code level - production and development branches are used to
diffrentiate them. Each microservice is packed as a docker-image which has 2 tags - one that represents the production
package and the second that represents the development package.

• Docker Image for Reminder Service - adisakshya/reminder-service

• Docker Image for Event Service - adisakshya/event-service

• Docker Image for Noification Service - adisakshya/notification-service

The tags for the docker images are named following the format - { VERSION }-{ ENVIRONMENT_PREFIX }. Here
VERSION is the version of the microservice that has been packed in that docker-image and ENVIRONMENT_PREFIX is the
short name for a deployment environment. For example the name of docker image corresponding to the Event Service
is adisakshya/event-service and it has the following tags -

• 1.0.0-dev

• 1.0.0-prod

The production environment uses the docker-image tagged with prod and the development environment uses the
docker-image tagged with dev i.e., in case of event-service adisakshya/event-service:1.0.0-prod will be the

16 Chapter 6. Deployment Architecture

https://github.com/adisakshya/notification-service
https://hub.docker.com/r/adisakshya/notification-service/tags?page=1&ordering=last_updated
https://hub.docker.com/u/adisakshya
https://hub.docker.com/r/adisakshya/reminder-service
https://hub.docker.com/r/adisakshya/event-service
https://hub.docker.com/r/adisakshya/notification-service
https://hub.docker.com/r/adisakshya/event-service/tags?page=1&ordering=last_updated

Continuous Improvement, Release 1.0.0

docker-image used for deploying the event-service to production environment and adisakshya/event-service:1.
0.0-dev will be used to deploy it to the development environment.

6.4 Configurations and Environment Variables

There were a lot of reasons to use environment variables in this type of project the most important one’s were to enable
easier switching between multiple deployment environments and including configurations for external services.

There are multiple ways to define environment variables with Kubernetes -

Using configuration file

Environment variables can be included using the env field in the YAML configuration file. Environment variables that
are set following this way override any environment variables specified in the container image.

Using secrets

It allows us to inject multiple values at once from a file. They’re more suited to sensitive data like passwords, API
keys, etc. For example, database passwords, private SSH keys, and certificates should all go into secrets. Reminder
and Notification microservices uses Amazon RDS PostgreSQL Database and thus require appropriate credentials to
use the database, the Notification microservice also requires Fiebase Cloud Messaging Configuration JSON to be able
to function.

Following is an example of YAML configuration that can be used to set secrets -

apiVersion: v1
kind: Secret
metadata:
name: prod-ses-secrets
namespace: production
resourceVersion: "1"

type: Opaque
data:
Name of reminder-email-template
reminder_template: UHJvZHVjdGlvblJlbWluZGVyVGVtcGxhdGU=

apiVersion: v1
kind: Secret
metadata:
name: dev-ses-secrets
namespace: development
resourceVersion: "1"

type: Opaque
data:
Name of reminder-email-template
reminder_template: RGV2ZWxvcG1lbnRSZW1pbmRlclRlbXBsYXRl

Following is an example of YAML configuration that is used to create a deployment while utilizing secrets. Here
env is the name of deployment environment, env_prefix is either ‘dev’ or ‘prod’, resource_name is the name of
microservice for example - ‘event-service’, docker_image_name and docker_image_tag represent the name and
tag of the docker image associated with the resource_name.

6.4. Configurations and Environment Variables 17

Continuous Improvement, Release 1.0.0

apiVersion: apps/v1
kind: Deployment
metadata:
name: '{{ env_prefix }}-{{ resource_name }}'
namespace: '{{ env }}'
labels:
app: '{{ env_prefix }}-{{ resource_name }}'

spec:
selector:
matchLabels:
app: '{{ env_prefix }}-{{ resource_name }}'

replicas: 1
template:
metadata:
labels:
app: '{{ env_prefix }}-{{ resource_name }}'

spec:
containers:
- name: '{{ env_prefix }}-{{ resource_name }}'
image: '{{ docker_image_name }}:{{ docker_image_tag }}'
imagePullPolicy: Always
ports:
- containerPort: 80

env:
- name: NODE_ENV
value: '{{ env }}'

- name: DB_HOST
valueFrom:
secretKeyRef:
name: '{{ env_prefix }}-reminder-db-secrets'
key: host

- name: DB_NAME
valueFrom:
secretKeyRef:
name: '{{ env_prefix }}-reminder-db-secrets'
key: name

- name: DB_PASS
valueFrom:
secretKeyRef:
name: '{{ env_prefix }}-reminder-db-secrets'
key: password

- name: DB_USER
valueFrom:
secretKeyRef:
name: '{{ env_prefix }}-reminder-db-secrets'
key: user

- name: EVENT_TOPIC_ARN
valueFrom:
secretKeyRef:
name: '{{ env_prefix }}-sns-topics-secrets'
key: event_topic

18 Chapter 6. Deployment Architecture

	About
	Community Guide
	How can I contribute?
	Submit an issue
	Improve issues
	Comment on issues
	Submit a pull request

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Our Responsibilities
	Scope
	Enforcement
	Attribution

	Microservices Documentation
	Reminder Service
	Event Service
	Notification Service
	Notification Scheduler

	Changelog
	Reminder Service
	Event Service
	Notification Service
	Notification Scheduler

	CI/CD Pipeline
	Deployment Architecture
	Deployment Environments
	Kubernetes Namespaces
	Docker Images
	Configurations and Environment Variables

