

Continuous Improvement Project Documentation

Getting Started

	About

	Community Guide
	How can I contribute?

	Contributor Covenant Code of Conduct

Developer Guide

	Microservices Documentation
	Reminder Service

	Event Service

	Notification Service

	Notification Scheduler

	Changelog
	Reminder Service

	Event Service

	Notification Service

	Notification Scheduler

	CI/CD Pipeline

	Deployment Architecture
	Deployment Environments

	Kubernetes Namespaces

	Docker Images

	Configurations and Environment Variables

About

Many organizations moved away from their monolithic systems that served them well for many years to microservices which is the state-of-the-art software development technique that allows a complex application to be built as a suite of small services, developed around specific areas. Combined, they provide a cohesive set of functionalities and bring important business benefits.

This project embraces the DevOps method of working with microservices which is highly significant and well needed for these technologies to work at their best, highlighting key concepts to scale, synchronize and secure microservices architecture by implementing a notification-delivery system and also considering ways of optimizing the process of provisioning and managing infrastructure resources, automation servers, on-premise and services deployed in multiple environments.

Community Guide

	How can I contribute?
	Submit an issue

	Improve issues

	Comment on issues

	Submit a pull request

	Contributor Covenant Code of Conduct
	Our Pledge

	Our Standards

	Our Responsibilities

	Scope

	Enforcement

	Attribution

How can I contribute?

Submit an issue

Submitting an issue, be it a bug report or a feature request or an optimization, is one of the best ways to contribute to this project. Checking if everything works in your system and if the latest commits [https://github.com/adisakshya/playground/commits/master] work properly for you are both good ways to find bugs.

Please search existing issues to avoid creating duplicates.

Improve issues

Some issues are created with missing information (needs more info [https://github.com/adisakshya/playground/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22+label%3A%22needs+more+info%22]), are not reproducible, or are plain duplicates. Help us finding reproducible steps and closing duplicates.

Comment on issues

We are always looking for more opinions, leaving a comment in the issue tracker is a good opportunity to influence the future direction of Notable.

We also consider the number of “:+1:” an issue has when deciding if we are going to work on it in the Next milestone [https://github.com/adisakshya/playground/milestones] or not, so be sure to add your “:+1:” to the issues you’re most interested in.

Submit a pull request

All versions of the app are open-source, you can fork the repository and modify it, and submit it as a PR or you might want to do that to experiment with radical new ideas.

Contributor Covenant Code of Conduct

Please note that this project is released with a Code of Conduct. By participating in this project you agree to abide by its terms.

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to make participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies within all project spaces, and it also applies when
an individual is representing the project or its community in public spaces.
Examples of representing a project or community include using an official
project e-mail address, posting via an official social media account, or acting
as an appointed representative at an online or offline event. Representation of
a project may be further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at adisakshya98@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Microservices Documentation

	Reminder Service

	Event Service

	Notification Service

	Notification Scheduler

Reminder Service

This documentation is imported from official documentation of reminder-service [https://github.com/adisakshya/reminder-service]

Event Service

This documentation is imported from official documentation of event-service [https://github.com/adisakshya/event-service]

Notification Service

This documentation is imported from official documentation of notification-service [https://github.com/adisakshya/notification-service]

Notification Scheduler

This documentation is imported from official documentation of notification-scheduler [https://github.com/adisakshya/custom-scheduler]

Changelog

	Reminder Service

	Event Service

	Notification Service

	Notification Scheduler

Reminder Service

This changelog is imported from official changelog of reminder-service [https://github.com/adisakshya/reminder-service]

Event Service

This changelog is imported from official changelog of event-service [https://github.com/adisakshya/event-service]

Notification Service

This changelog is imported from official changelog of notification-service [https://github.com/adisakshya/notification-service]

Notification Scheduler

This changelog is imported from official changelog of notification-scheduler [https://github.com/adisakshya/custom-scheduler]

CI/CD Pipeline

What is CI-CD?

Continuous Integration (CI) and Continuous Deployment/Delivery (CD) is a method to frequently deliver software to customers by introducing automation into the stages of software development.
CI/CD introduces ongoing automation and continuous monitoring throughout the lifecycle of apps, from integration and testing phases to delivery and deployment.
Taken together, these connected practices are often referred to as a “CI/CD pipeline” and are supported by development and operations teams working together.

The goal of CI is to establish a consistent and automated method to build, package, and test software. CD picks up the CI artifacts and automate the delivery of application to a selected infrastructure environment.

How CI/CD has been used with microservices?

The Notification Delivery system runs in 2 environments namely -
1. Development (or dev) Environment
2. Production Environment

At the source code level these environments can be distinguished using Git branches.
Every microservice has 3 git branches namely development, production and master.

For every commit corresponding to a major-minor update, bug-fix, improvements, patches is built, tested and deployed using a CI/CD pipeline powered by Travis CI.

[image: CI/CD Pipeline Architecture]
[image: Notification Service CI Pipeline on Travis CI]
CI/CD stages are different for different branches and environments.
Any commit/merge to the development-branch will build the source code and update the development docker-image on DockerHub, same applies for commits/merges on production-branch.

Any update in development environment will be reflected only in the development namespace and any update in production development environment will be reflected only in the production namespace.
Updates may include but not limited to the following -
1. Scaling number of pods
2. Updating deployment with newer version of docker image
3. Updaing environment variables and secrets

After the build is complete Ansible updates the Kubernetes deployments by telling it to pull the updated docker-images for the microservices from DockerHub and create/update various resources as defined in the configuration files.

Deployment Architecture

[image: Deployment Architecture]

	Deployment Environments

	Kubernetes Namespaces

	Docker Images

	Configurations and Environment Variables

Deployment Environments

The notification-delivery system is deployed on Kubernetes in multiple environments and maintained on GitHub. The table below describes a list of possible tiers -

Local - Developer’s desktop/workstation where changes are worked on and tried out.

Development (dev) - Development servers acting as a sandbox where unit testing may be performed by the developer. The environment may contain development tools, different or additional versions of libraries and support software, etc., which are not present in the production environment.

Staging - Mirror of production environment.

Production - The environment that users directly interact with.

For this projects the microservices are deployed in 2 environments namely -

	Development (or dev) Environment

	Production Environment

At the source code level these environments are distinguished using Git branches.
The development and production git branchs of the respective repositories features the source code for the Development Environment and the Production Environment respectively.

[image: ../../../_images/microservice-branches.png]Showing all branches in the Notification Service git repository

The development branch is created from the master branch. An appropriate branch can be created from the development branch for any feature updates, patches etc and then it can be merged back to the development branch. Say when a feature currently in the development branch is complete to be shiped then the development branch can be merged to the master branch. The master branch reflects the code for the staging envionment through which all kinds of updates have to pass through. The production branch reflects the deployed code. A newer version of a microservice can be deployed by merging the master branch into the production branch. If you need to know what code is in production, you can check out the production branch.

Kubernetes Namespaces

Kubernetes supports multiple virtual clusters backed by the same physical cluster. These virtual clusters are called namespaces and provide logical separation between the teams and their environments.

At the deployment level, i.e., on Kubernetes the deployment environments are distinguished using namespaces.
Both development and production environments have their own namespaces, which logically separates them and allows modification in one without affecting the other environment. Using namespaces as environments makes it easier to manage workload for a project from a single Kubernetes cluster and this avoids the pain of maintaining multiple Kubernetes clusters for multiple environments.

[image: ../../../_images/environments.png]Kubernetes Dashboard showing production and development namespaces

The production namespace wraps the production workload i.e., the source-code corresponding to the production-version/branch of each microservice is deployed in this namespace. The development namespace wraps the development workload i.e., the source-code corresponding to the development-version/branch of each microservice is deployed in this namespace.

Each environment has a unique identifier prefix asssigned to it, for production environment it is prod and for development environment it is dev. The unique prefix is used while naming the deployments, replica-sets, pods and services in the environment.
For example the Notification Service [https://github.com/adisakshya/notification-service] is named as prod-notification-service and dev-notification-service when deployed to production environmentand development environment respectively. These prefix are also used while tagging the docker-images [https://hub.docker.com/r/adisakshya/notification-service/tags?page=1&ordering=last_updated] for the microservices to separate production and development packages.

Each environment has it own set of configurations, deployments and services running and independently interacting with various external services like AWS SNS, SQS, RDS, Firebase Cloud Messaging without interferring with the other environment.

The namespaces are created using the following YAML configuration -

apiVersion: v1
kind: Namespace
metadata:
 name: development
 labels:
 name: development

apiVersion: v1
kind: Namespace
metadata:
 name: production
 labels:
 name: production

Docker Images

To deploy any application to Kubernetes it is needed to be wraped as a container, this can be done by building docker-images.
Each microservice is packaged as a docker image stored in a image repository provided by Dockerhub [https://hub.docker.com/u/adisakshya].

As each microservice runs in 2 environments namely development and production which are inturn two different namespaces in the Kubernetes Cluster, at the source code level - production and development branches are used to diffrentiate them. Each microservice is packed as a docker-image which has 2 tags - one that represents the production package and the second that represents the development package.

	Docker Image for Reminder Service - adisakshya/reminder-service [https://hub.docker.com/r/adisakshya/reminder-service]

	Docker Image for Event Service - adisakshya/event-service [https://hub.docker.com/r/adisakshya/event-service]

	Docker Image for Noification Service - adisakshya/notification-service [https://hub.docker.com/r/adisakshya/notification-service]

The tags for the docker images are named following the format - { VERSION }-{ ENVIRONMENT_PREFIX }. Here VERSION is the version of the microservice that has been packed in that docker-image and ENVIRONMENT_PREFIX is the short name for a deployment environment.
For example the name of docker image corresponding to the Event Service [https://hub.docker.com/r/adisakshya/event-service/tags?page=1&ordering=last_updated] is adisakshya/event-service and it has the following tags -

	1.0.0-dev

	1.0.0-prod

The production environment uses the docker-image tagged with prod and the development environment uses the docker-image tagged with dev i.e., in case of event-service adisakshya/event-service:1.0.0-prod will be the docker-image used for deploying the event-service to production environment and adisakshya/event-service:1.0.0-dev will be used to deploy it to the development environment.

Configurations and Environment Variables

There were a lot of reasons to use environment variables in this type of project the most important one’s were to enable easier switching between multiple deployment environments and including configurations for external services.

There are multiple ways to define environment variables with Kubernetes -

Using configuration file

Environment variables can be included using the env field in the YAML configuration file. Environment variables that are set following this way override any environment variables specified in the container image.

Using secrets

It allows us to inject multiple values at once from a file. They’re more suited to sensitive data like passwords, API keys, etc. For example, database passwords, private SSH keys, and certificates should all go into secrets. Reminder and Notification microservices uses Amazon RDS PostgreSQL Database and thus require appropriate credentials to use the database, the Notification microservice also requires Fiebase Cloud Messaging Configuration JSON to be able to function.

Following is an example of YAML configuration that can be used to set secrets -

apiVersion: v1
kind: Secret
metadata:
 name: prod-ses-secrets
 namespace: production
 resourceVersion: "1"
type: Opaque
data:
 # Name of reminder-email-template
 reminder_template: UHJvZHVjdGlvblJlbWluZGVyVGVtcGxhdGU=

apiVersion: v1
kind: Secret
metadata:
 name: dev-ses-secrets
 namespace: development
 resourceVersion: "1"
type: Opaque
data:
 # Name of reminder-email-template
 reminder_template: RGV2ZWxvcG1lbnRSZW1pbmRlclRlbXBsYXRl

Following is an example of YAML configuration that is used to create a deployment while utilizing secrets. Here env is the name of deployment environment, env_prefix is either ‘dev’ or ‘prod’, resource_name is the name of microservice for example - ‘event-service’, docker_image_name and docker_image_tag represent the name and tag of the docker image associated with the resource_name.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: '{{ env_prefix }}-{{ resource_name }}'
 namespace: '{{ env }}'
 labels:
 app: '{{ env_prefix }}-{{ resource_name }}'
spec:
 selector:
 matchLabels:
 app: '{{ env_prefix }}-{{ resource_name }}'
 replicas: 1
 template:
 metadata:
 labels:
 app: '{{ env_prefix }}-{{ resource_name }}'
 spec:
 containers:
 - name: '{{ env_prefix }}-{{ resource_name }}'
 image: '{{ docker_image_name }}:{{ docker_image_tag }}'
 imagePullPolicy: Always
 ports:
 - containerPort: 80
 env:
 - name: NODE_ENV
 value: '{{ env }}'
 - name: DB_HOST
 valueFrom:
 secretKeyRef:
 name: '{{ env_prefix }}-reminder-db-secrets'
 key: host
 - name: DB_NAME
 valueFrom:
 secretKeyRef:
 name: '{{ env_prefix }}-reminder-db-secrets'
 key: name
 - name: DB_PASS
 valueFrom:
 secretKeyRef:
 name: '{{ env_prefix }}-reminder-db-secrets'
 key: password
 - name: DB_USER
 valueFrom:
 secretKeyRef:
 name: '{{ env_prefix }}-reminder-db-secrets'
 key: user
 - name: EVENT_TOPIC_ARN
 valueFrom:
 secretKeyRef:
 name: '{{ env_prefix }}-sns-topics-secrets'
 key: event_topic

Index

 _static/minus.png

_static/plus.png

_images/microservice-branches.png
O seoorimpro /

& adisakshya / notification-service

<> Code

© Issues (2 19 Pull requests

Pull requests

® Actions

1 3bondes 018

Switch branches/tags

Branches Tags

+/ master
development

production

View all branches
travisyml
CHANGELOG.md
LICENSE
README.md

requirements.txt

:= READMEmd

default

Issues Marketplace Explore

[projects M wiki @ Security

added ansible assets
added architecture-diagram
renamed functions

added example-env

updated kubernetes assets
updated build-stages and language
added Changelog

Initial commit

updated README outline

added requirements.txt

Overview

1o Insights &3 Settings

® Unwatch

R

A A notification delivery microservice
based on AWS-SQS and FCM

v adscice onNov 30,2020 D 70 commits

8 months ago
8 months ago
8 months ago
9 months ago
8 months ago
8 months ago
7 months ago

12 months ago
7 months ago

8 months ago

7

notifications api

- 1 Y star

docker

kubernetes ansible-playbook

notification-service

swagger sgs

sns fem sending-notifications

kubernetes-deployment nestjs

notification-microservice

[Readme

&5 MIT License

Contributors ‘2

o adisakshya Adisakshya Chauhan

@8] ccpencabotivon

Languages

® TypeScript 95.8%
® Shell 15%

® JavaScript 2.0%
Dockerfile 0.7%

@

_images/notification-service-travis.png
Travis Cl

Search all repositories

(ﬁ? Dashboard

My Repositories ~ Running (0/0) +

/ adisakshya/playground # 136

© Duration: 7 min 19 sec

Finished: 11 days ago

adisakshya/extension-pack % 78
Duration: 1 min 39 sec
Finished: 3 months ago
adisakshya/reminder-servic: # 138

Duration: 1 min 31 sec
Finished: 3 months ago

adisakshya/cv 4 49

Duration: 5 min 17 sec
Finished: 8 months ago

adisakshya/event-service # 48

Duration: 1 min 28 sec
Finished: 8 months ago

adisakshya/notification-ser. % 31

Duration: 1 min 39 sec

Changelog Documentation Help

adisakshya / notification-service

Current Branches Build History Pull Requests > Build #21

« development fix: merge-conflict

o Commitdesc2ea
1 Compare 8348525. .d68c2ea

{ Branch development

@ Adisakshya Chauhan

Build jobs View config ®

@ build

v #2211 3 AMD64 £} Xenial Build and Test

@© push-dev-docker-image

v #0212) AMD64 £ Xenial
@ deploy
v # 23 3 AMD64 £} Xenial Deploy service to Kubernetes

build passing

-o- #21 passed

(& Ran for 6 min 56 sec
@© Total time 6 min 10 sec

8months ago

Push development docker image to Docker Hub

([X

More options

C Restart build

© 1min 38 sec

© 1min38sec

© 2min 53 sec

(© 2min53sec

© 1min39sec

(© 1min39sec

)
9

@

3
9

@

)
9

@

_static/file.png

nav.xhtml

 Table of Contents

 		
 Continuous Improvement Project Documentation

 		
 About

 		
 Community Guide

 		
 How can I contribute?

 		
 Submit an issue

 		
 Improve issues

 		
 Comment on issues

 		
 Submit a pull request

 		
 Contributor Covenant Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

 		
 Microservices Documentation

 		
 Reminder Service

 		
 Event Service

 		
 Notification Service

 		
 Notification Scheduler

 		
 Changelog

 		
 Reminder Service

 		
 Event Service

 		
 Notification Service

 		
 Notification Scheduler

 		
 CI/CD Pipeline

 		
 Deployment Architecture

 		
 Deployment Environments

 		
 Kubernetes Namespaces

 		
 Docker Images

 		
 Configurations and Environment Variables

_images/deployment.png
@ Travis C—

docker

Kubernetes

Reminder — - — — — — Bl
Microservice
Prod | |
Deployment
v1.1.0 L - — — — J
Event r_ _______ _]
Microservice
e 1 @@ |
Deployment
v.1.5.7 L _______ J
N_otificatiqn - - — — — — R
Microservice
Deployment
v1.3.2 L - _ _ _ _ J
production namespace
Reminder f_ _______ _]

Microservice
Dev Deployment
vl.1.1-dev

Event
Microservice
Dev Deployment
v1.6.0-dev

Notification
Microservice
Dev Deployment
v1.3.4-dev

development namespace

\

Amazon
SNS

Amazon
SQS

Amazon
RDS

(v

Amazon
SES

External Services

Amazon
DynamoDB

FCM

_images/environments.png
Kubernetes

Reminder — - — — — — Bl
Microservice
Prod | |
Deployment
v1.1.0 L - — — — J
Event r_ _]
Microservice
e Q& |
Deployment
v.1.5.7 L _______ J
Notification - - — — — — R
Microservice
Deployment
v1.3.2 L - _ _ _ _ J
production namespace
Reminder f_ _______ _]

Microservice
Dev Deployment
vl.1.1-dev

Event
Microservice
Dev Deployment
v1.6.0-dev

Notification
Microservice
Dev Deployment
v1.3.4-dev

development namespace

_images/ci-cd-pipeline.png
GitHub
Repository

Dev Team Ez%

A

Automated
Build

Trigger

A

-
Slack
o |

Build

\

If build

pas

sed

Test

If all tests
passed

Deliver

If delivery was
success

ANSIBLE

Push docker
image to dockerhub

Update
deployment

S EEE——
docker
Pull updated

docker-image

Kubernetes

Build Notification

A

